micro_sam.sam_annotator.annotator_tracking
1from typing import Optional, Tuple, Union 2 3import napari 4import numpy as np 5 6import torch 7 8from magicgui.widgets import ComboBox, Container 9 10from ._annotator import _AnnotatorBase 11from ._state import AnnotatorState 12from . import util as vutil 13from ._tooltips import get_tooltip 14from . import _widgets as widgets 15from .. import util 16 17# Cyan (track) and Magenta (division) 18STATE_COLOR_CYCLE = ["#00FFFF", "#FF00FF", ] 19"""@private""" 20 21 22# This solution is a bit hacky, so I won't move it to _widgets.py yet. 23def create_tracking_menu(points_layer, box_layer, states, track_ids): 24 """@private""" 25 state = AnnotatorState() 26 27 state_menu = ComboBox(label="track_state", choices=states, tooltip=get_tooltip("annotator_tracking", "track_state")) 28 track_id_menu = ComboBox(label="track_id", choices=list(map(str, track_ids)), 29 tooltip=get_tooltip("annotator_tracking", "track_id")) 30 tracking_widget = Container(widgets=[state_menu, track_id_menu]) 31 32 def update_state(event): 33 new_state = str(points_layer.current_properties["state"][0]) 34 if new_state != state_menu.value: 35 state_menu.value = new_state 36 37 def update_track_id(event): 38 new_id = str(points_layer.current_properties["track_id"][0]) 39 if new_id != track_id_menu.value: 40 track_id_menu.value = new_id 41 state.current_track_id = int(new_id) 42 43 # def update_state_boxes(event): 44 # new_state = str(box_layer.current_properties["state"][0]) 45 # if new_state != state_menu.value: 46 # state_menu.value = new_state 47 48 def update_track_id_boxes(event): 49 new_id = str(box_layer.current_properties["track_id"][0]) 50 if new_id != track_id_menu.value: 51 track_id_menu.value = new_id 52 state.current_track_id = int(new_id) 53 54 points_layer.events.current_properties.connect(update_state) 55 points_layer.events.current_properties.connect(update_track_id) 56 # box_layer.events.current_properties.connect(update_state_boxes) 57 box_layer.events.current_properties.connect(update_track_id_boxes) 58 59 def state_changed(new_state): 60 current_properties = points_layer.current_properties 61 current_properties["state"] = np.array([new_state]) 62 points_layer.current_properties = current_properties 63 points_layer.refresh_colors() 64 65 def track_id_changed(new_track_id): 66 current_properties = points_layer.current_properties 67 current_properties["track_id"] = np.array([new_track_id]) 68 # Note: this fails with a key error after committing a lineage with multiple tracks. 69 # I think this does not cause any further errors, so we just skip this. 70 try: 71 points_layer.current_properties = current_properties 72 except KeyError: 73 pass 74 state.current_track_id = int(new_track_id) 75 76 # def state_changed_boxes(new_state): 77 # current_properties = box_layer.current_properties 78 # current_properties["state"] = np.array([new_state]) 79 # box_layer.current_properties = current_properties 80 # box_layer.refresh_colors() 81 82 def track_id_changed_boxes(new_track_id): 83 current_properties = box_layer.current_properties 84 current_properties["track_id"] = np.array([new_track_id]) 85 box_layer.current_properties = current_properties 86 state.current_track_id = int(new_track_id) 87 88 state_menu.changed.connect(state_changed) 89 track_id_menu.changed.connect(track_id_changed) 90 # state_menu.changed.connect(state_changed_boxes) 91 track_id_menu.changed.connect(track_id_changed_boxes) 92 93 state_menu.set_choice("track") 94 return tracking_widget 95 96 97class AnnotatorTracking(_AnnotatorBase): 98 99 # The tracking annotator needs different settings for the prompt layers 100 # to support the additional tracking state. 101 # That's why we over-ride this function. 102 def _create_layers(self): 103 self._point_labels = ["positive", "negative"] 104 self._track_state_labels = ["track", "division"] 105 106 self._point_prompt_layer = self._viewer.add_points( 107 name="point_prompts", 108 property_choices={ 109 "label": self._point_labels, 110 "state": self._track_state_labels, 111 "track_id": ["1"], # we use string to avoid pandas warning 112 }, 113 border_color="label", 114 border_color_cycle=vutil.LABEL_COLOR_CYCLE, 115 symbol="o", 116 face_color="state", 117 face_color_cycle=STATE_COLOR_CYCLE, 118 border_width=0.4, 119 size=12, 120 ndim=self._ndim, 121 ) 122 self._point_prompt_layer.border_color_mode = "cycle" 123 self._point_prompt_layer.face_color_mode = "cycle" 124 125 # Using the box layer to set divisions currently doesn't work. 126 # That's why some of the code below is commented out. 127 self._box_prompt_layer = self._viewer.add_shapes( 128 shape_type="rectangle", 129 edge_width=4, 130 ndim=self._ndim, 131 face_color="transparent", 132 name="prompts", 133 edge_color="green", 134 property_choices={"track_id": ["1"]}, 135 # property_choces={"track_id": ["1"], "state": self._track_state_labels}, 136 # edge_color_cycle=STATE_COLOR_CYCLE, 137 ) 138 # self._box_prompt_layer.edge_color_mode = "cycle" 139 140 # Add the label layers for the current object, the automatic segmentation and the committed segmentation. 141 dummy_data = np.zeros(self._shape, dtype="uint32") 142 self._viewer.add_labels(data=dummy_data, name="current_object") 143 self._viewer.add_labels(data=dummy_data, name="auto_segmentation") 144 self._viewer.add_labels(data=dummy_data, name="committed_objects") 145 # Randomize colors so it is easy to see when object committed. 146 self._viewer.layers["committed_objects"].new_colormap() 147 148 def _get_widgets(self): 149 state = AnnotatorState() 150 # Create the tracking state menu. 151 self._tracking_widget = create_tracking_menu( 152 self._point_prompt_layer, self._box_prompt_layer, 153 states=self._track_state_labels, track_ids=list(state.lineage.keys()), 154 ) 155 segment_nd = widgets.SegmentNDWidget(self._viewer, tracking=True) 156 return { 157 "tracking": self._tracking_widget, 158 "segment": widgets.segment_frame(), 159 "segment_nd": segment_nd, 160 "commit": widgets.commit_track(), 161 "clear": widgets.clear_track(), 162 } 163 164 def __init__(self, viewer: "napari.viewer.Viewer") -> None: 165 # Initialize the state for tracking. 166 self._init_track_state() 167 super().__init__(viewer=viewer, ndim=3) 168 # Go to t=0. 169 self._viewer.dims.current_step = (0, 0, 0) + tuple(sh // 2 for sh in self._shape[1:]) 170 171 def _init_track_state(self): 172 state = AnnotatorState() 173 state.current_track_id = 1 174 state.lineage = {1: []} 175 state.committed_lineages = [] 176 177 def _update_image(self): 178 super()._update_image() 179 self._init_track_state() 180 181 182def annotator_tracking( 183 image: np.ndarray, 184 embedding_path: Optional[str] = None, 185 # tracking_result: Optional[str] = None, 186 model_type: str = util._DEFAULT_MODEL, 187 tile_shape: Optional[Tuple[int, int]] = None, 188 halo: Optional[Tuple[int, int]] = None, 189 return_viewer: bool = False, 190 viewer: Optional["napari.viewer.Viewer"] = None, 191 checkpoint_path: Optional[str] = None, 192 device: Optional[Union[str, torch.device]] = None, 193) -> Optional["napari.viewer.Viewer"]: 194 """Start the tracking annotation tool fora given timeseries. 195 196 Args: 197 raw: The image data. 198 embedding_path: Filepath for saving the precomputed embeddings. 199 model_type: The Segment Anything model to use. For details on the available models check out 200 https://computational-cell-analytics.github.io/micro-sam/micro_sam.html#finetuned-models. 201 tile_shape: Shape of tiles for tiled embedding prediction. 202 If `None` then the whole image is passed to Segment Anything. 203 halo: Shape of the overlap between tiles, which is needed to segment objects on tile boarders. 204 return_viewer: Whether to return the napari viewer to further modify it before starting the tool. 205 viewer: The viewer to which the SegmentAnything functionality should be added. 206 This enables using a pre-initialized viewer. 207 checkpoint_path: Path to a custom checkpoint from which to load the SAM model. 208 device: The computational device to use for the SAM model. 209 210 Returns: 211 The napari viewer, only returned if `return_viewer=True`. 212 """ 213 214 # TODO update this to match the new annotator design 215 # Initialize the predictor state. 216 state = AnnotatorState() 217 state.initialize_predictor( 218 image, model_type=model_type, save_path=embedding_path, 219 halo=halo, tile_shape=tile_shape, prefer_decoder=False, 220 ndim=3, checkpoint_path=checkpoint_path, device=device, 221 ) 222 state.image_shape = image.shape[:-1] if image.ndim == 4 else image.shape 223 224 if viewer is None: 225 viewer = napari.Viewer() 226 227 viewer.add_image(image, name="image") 228 annotator = AnnotatorTracking(viewer) 229 230 # Trigger layer update of the annotator so that layers have the correct shape. 231 annotator._update_image() 232 233 # Add the annotator widget to the viewer and sync widgets. 234 viewer.window.add_dock_widget(annotator) 235 vutil._sync_embedding_widget( 236 state.widgets["embeddings"], model_type, 237 save_path=embedding_path, checkpoint_path=checkpoint_path, 238 device=device, tile_shape=tile_shape, halo=halo 239 ) 240 241 if return_viewer: 242 return viewer 243 244 napari.run() 245 246 247def main(): 248 """@private""" 249 parser = vutil._initialize_parser( 250 description="Run interactive segmentation for an image volume.", 251 with_segmentation_result=False, 252 with_instance_segmentation=False, 253 ) 254 255 # Tracking result is not yet supported, we need to also deserialize the lineage. 256 # parser.add_argument( 257 # "-t", "--tracking_result", 258 # help="Optional filepath to a precomputed tracking result. If passed this will be used to initialize the " 259 # "'committed_tracks' layer. This can be useful if you want to correct an existing tracking result or if you " 260 # "have saved intermediate results from the annotator and want to continue. " 261 # "Supports the same file formats as 'input'." 262 # ) 263 # parser.add_argument( 264 # "-tk", "--tracking_key", 265 # help="The key for opening the tracking result. Same rules as for 'key' apply." 266 # ) 267 268 args = parser.parse_args() 269 image = util.load_image_data(args.input, key=args.key) 270 271 annotator_tracking( 272 image, embedding_path=args.embedding_path, model_type=args.model_type, 273 tile_shape=args.tile_shape, halo=args.halo, 274 checkpoint_path=args.checkpoint, device=args.device, 275 )
98class AnnotatorTracking(_AnnotatorBase): 99 100 # The tracking annotator needs different settings for the prompt layers 101 # to support the additional tracking state. 102 # That's why we over-ride this function. 103 def _create_layers(self): 104 self._point_labels = ["positive", "negative"] 105 self._track_state_labels = ["track", "division"] 106 107 self._point_prompt_layer = self._viewer.add_points( 108 name="point_prompts", 109 property_choices={ 110 "label": self._point_labels, 111 "state": self._track_state_labels, 112 "track_id": ["1"], # we use string to avoid pandas warning 113 }, 114 border_color="label", 115 border_color_cycle=vutil.LABEL_COLOR_CYCLE, 116 symbol="o", 117 face_color="state", 118 face_color_cycle=STATE_COLOR_CYCLE, 119 border_width=0.4, 120 size=12, 121 ndim=self._ndim, 122 ) 123 self._point_prompt_layer.border_color_mode = "cycle" 124 self._point_prompt_layer.face_color_mode = "cycle" 125 126 # Using the box layer to set divisions currently doesn't work. 127 # That's why some of the code below is commented out. 128 self._box_prompt_layer = self._viewer.add_shapes( 129 shape_type="rectangle", 130 edge_width=4, 131 ndim=self._ndim, 132 face_color="transparent", 133 name="prompts", 134 edge_color="green", 135 property_choices={"track_id": ["1"]}, 136 # property_choces={"track_id": ["1"], "state": self._track_state_labels}, 137 # edge_color_cycle=STATE_COLOR_CYCLE, 138 ) 139 # self._box_prompt_layer.edge_color_mode = "cycle" 140 141 # Add the label layers for the current object, the automatic segmentation and the committed segmentation. 142 dummy_data = np.zeros(self._shape, dtype="uint32") 143 self._viewer.add_labels(data=dummy_data, name="current_object") 144 self._viewer.add_labels(data=dummy_data, name="auto_segmentation") 145 self._viewer.add_labels(data=dummy_data, name="committed_objects") 146 # Randomize colors so it is easy to see when object committed. 147 self._viewer.layers["committed_objects"].new_colormap() 148 149 def _get_widgets(self): 150 state = AnnotatorState() 151 # Create the tracking state menu. 152 self._tracking_widget = create_tracking_menu( 153 self._point_prompt_layer, self._box_prompt_layer, 154 states=self._track_state_labels, track_ids=list(state.lineage.keys()), 155 ) 156 segment_nd = widgets.SegmentNDWidget(self._viewer, tracking=True) 157 return { 158 "tracking": self._tracking_widget, 159 "segment": widgets.segment_frame(), 160 "segment_nd": segment_nd, 161 "commit": widgets.commit_track(), 162 "clear": widgets.clear_track(), 163 } 164 165 def __init__(self, viewer: "napari.viewer.Viewer") -> None: 166 # Initialize the state for tracking. 167 self._init_track_state() 168 super().__init__(viewer=viewer, ndim=3) 169 # Go to t=0. 170 self._viewer.dims.current_step = (0, 0, 0) + tuple(sh // 2 for sh in self._shape[1:]) 171 172 def _init_track_state(self): 173 state = AnnotatorState() 174 state.current_track_id = 1 175 state.lineage = {1: []} 176 state.committed_lineages = [] 177 178 def _update_image(self): 179 super()._update_image() 180 self._init_track_state()
Base class for micro_sam annotation plugins.
Implements the logic for the 2d, 3d and tracking annotator. The annotators differ in their data dimensionality and the widgets.
AnnotatorTracking(viewer: napari.viewer.Viewer)
165 def __init__(self, viewer: "napari.viewer.Viewer") -> None: 166 # Initialize the state for tracking. 167 self._init_track_state() 168 super().__init__(viewer=viewer, ndim=3) 169 # Go to t=0. 170 self._viewer.dims.current_step = (0, 0, 0) + tuple(sh // 2 for sh in self._shape[1:])
Create the annotator GUI.
Arguments:
- viewer: The napari viewer.
- ndim: The number of spatial dimension of the image data (2 or 3).
Inherited Members
- PyQt5.QtWidgets.QScrollArea
- alignment
- ensureVisible
- ensureWidgetVisible
- event
- eventFilter
- focusNextPrevChild
- resizeEvent
- scrollContentsBy
- setAlignment
- setWidget
- setWidgetResizable
- sizeHint
- takeWidget
- viewportSizeHint
- widget
- widgetResizable
- PyQt5.QtWidgets.QAbstractScrollArea
- SizeAdjustPolicy
- addScrollBarWidget
- contextMenuEvent
- cornerWidget
- dragEnterEvent
- dragLeaveEvent
- dragMoveEvent
- dropEvent
- horizontalScrollBar
- horizontalScrollBarPolicy
- keyPressEvent
- maximumViewportSize
- minimumSizeHint
- mouseDoubleClickEvent
- mouseMoveEvent
- mousePressEvent
- mouseReleaseEvent
- paintEvent
- scrollBarWidgets
- setCornerWidget
- setHorizontalScrollBar
- setHorizontalScrollBarPolicy
- setSizeAdjustPolicy
- setVerticalScrollBar
- setVerticalScrollBarPolicy
- setViewport
- setViewportMargins
- setupViewport
- sizeAdjustPolicy
- verticalScrollBar
- verticalScrollBarPolicy
- viewport
- viewportEvent
- viewportMargins
- wheelEvent
- AdjustIgnored
- AdjustToContents
- AdjustToContentsOnFirstShow
- PyQt5.QtWidgets.QFrame
- Shadow
- Shape
- StyleMask
- changeEvent
- drawFrame
- frameRect
- frameShadow
- frameShape
- frameStyle
- frameWidth
- initStyleOption
- lineWidth
- midLineWidth
- setFrameRect
- setFrameShadow
- setFrameShape
- setFrameStyle
- setLineWidth
- setMidLineWidth
- Box
- HLine
- NoFrame
- Panel
- Plain
- Raised
- Shadow_Mask
- Shape_Mask
- StyledPanel
- Sunken
- VLine
- WinPanel
- PyQt5.QtWidgets.QWidget
- RenderFlag
- RenderFlags
- acceptDrops
- accessibleDescription
- accessibleName
- actionEvent
- actions
- activateWindow
- addAction
- addActions
- adjustSize
- autoFillBackground
- backgroundRole
- baseSize
- childAt
- childrenRect
- childrenRegion
- clearFocus
- clearMask
- close
- closeEvent
- contentsMargins
- contentsRect
- contextMenuPolicy
- create
- createWindowContainer
- cursor
- destroy
- devType
- effectiveWinId
- ensurePolished
- enterEvent
- find
- focusInEvent
- focusNextChild
- focusOutEvent
- focusPolicy
- focusPreviousChild
- focusProxy
- focusWidget
- font
- fontInfo
- fontMetrics
- foregroundRole
- frameGeometry
- frameSize
- geometry
- getContentsMargins
- grab
- grabGesture
- grabKeyboard
- grabMouse
- grabShortcut
- graphicsEffect
- graphicsProxyWidget
- hasFocus
- hasHeightForWidth
- hasMouseTracking
- hasTabletTracking
- height
- heightForWidth
- hide
- hideEvent
- initPainter
- inputMethodEvent
- inputMethodHints
- inputMethodQuery
- insertAction
- insertActions
- isActiveWindow
- isAncestorOf
- isEnabled
- isEnabledTo
- isFullScreen
- isHidden
- isLeftToRight
- isMaximized
- isMinimized
- isModal
- isRightToLeft
- isVisible
- isVisibleTo
- isWindow
- isWindowModified
- keyReleaseEvent
- keyboardGrabber
- layout
- layoutDirection
- leaveEvent
- locale
- lower
- mapFrom
- mapFromGlobal
- mapFromParent
- mapTo
- mapToGlobal
- mapToParent
- mask
- maximumHeight
- maximumSize
- maximumWidth
- metric
- minimumHeight
- minimumSize
- minimumWidth
- mouseGrabber
- move
- moveEvent
- nativeEvent
- nativeParentWidget
- nextInFocusChain
- normalGeometry
- overrideWindowFlags
- overrideWindowState
- paintEngine
- palette
- parentWidget
- pos
- previousInFocusChain
- raise_
- rect
- releaseKeyboard
- releaseMouse
- releaseShortcut
- removeAction
- render
- repaint
- resize
- restoreGeometry
- saveGeometry
- screen
- scroll
- setAcceptDrops
- setAccessibleDescription
- setAccessibleName
- setAttribute
- setAutoFillBackground
- setBackgroundRole
- setBaseSize
- setContentsMargins
- setContextMenuPolicy
- setCursor
- setDisabled
- setEnabled
- setFixedHeight
- setFixedSize
- setFixedWidth
- setFocus
- setFocusPolicy
- setFocusProxy
- setFont
- setForegroundRole
- setGeometry
- setGraphicsEffect
- setHidden
- setInputMethodHints
- setLayout
- setLayoutDirection
- setLocale
- setMask
- setMaximumHeight
- setMaximumSize
- setMaximumWidth
- setMinimumHeight
- setMinimumSize
- setMinimumWidth
- setMouseTracking
- setPalette
- setParent
- setShortcutAutoRepeat
- setShortcutEnabled
- setSizeIncrement
- setSizePolicy
- setStatusTip
- setStyle
- setStyleSheet
- setTabOrder
- setTabletTracking
- setToolTip
- setToolTipDuration
- setUpdatesEnabled
- setVisible
- setWhatsThis
- setWindowFilePath
- setWindowFlag
- setWindowFlags
- setWindowIcon
- setWindowIconText
- setWindowModality
- setWindowModified
- setWindowOpacity
- setWindowRole
- setWindowState
- setWindowTitle
- show
- showEvent
- showFullScreen
- showMaximized
- showMinimized
- showNormal
- size
- sizeIncrement
- sizePolicy
- stackUnder
- statusTip
- style
- styleSheet
- tabletEvent
- testAttribute
- toolTip
- toolTipDuration
- underMouse
- ungrabGesture
- unsetCursor
- unsetLayoutDirection
- unsetLocale
- update
- updateGeometry
- updateMicroFocus
- updatesEnabled
- visibleRegion
- whatsThis
- width
- winId
- window
- windowFilePath
- windowFlags
- windowHandle
- windowIcon
- windowIconText
- windowModality
- windowOpacity
- windowRole
- windowState
- windowTitle
- windowType
- x
- y
- DrawChildren
- DrawWindowBackground
- IgnoreMask
- windowIconTextChanged
- windowIconChanged
- windowTitleChanged
- customContextMenuRequested
- PyQt5.QtCore.QObject
- blockSignals
- childEvent
- children
- connectNotify
- customEvent
- deleteLater
- disconnect
- disconnectNotify
- dumpObjectInfo
- dumpObjectTree
- dynamicPropertyNames
- findChild
- findChildren
- inherits
- installEventFilter
- isSignalConnected
- isWidgetType
- isWindowType
- killTimer
- metaObject
- moveToThread
- objectName
- parent
- property
- pyqtConfigure
- receivers
- removeEventFilter
- sender
- senderSignalIndex
- setObjectName
- setProperty
- signalsBlocked
- startTimer
- thread
- timerEvent
- tr
- staticMetaObject
- objectNameChanged
- destroyed
- PyQt5.QtGui.QPaintDevice
- PaintDeviceMetric
- colorCount
- depth
- devicePixelRatio
- devicePixelRatioF
- devicePixelRatioFScale
- heightMM
- logicalDpiX
- logicalDpiY
- paintingActive
- physicalDpiX
- physicalDpiY
- widthMM
- PdmDepth
- PdmDevicePixelRatio
- PdmDevicePixelRatioScaled
- PdmDpiX
- PdmDpiY
- PdmHeight
- PdmHeightMM
- PdmNumColors
- PdmPhysicalDpiX
- PdmPhysicalDpiY
- PdmWidth
- PdmWidthMM
def
annotator_tracking( image: numpy.ndarray, embedding_path: Optional[str] = None, model_type: str = 'vit_l', tile_shape: Optional[Tuple[int, int]] = None, halo: Optional[Tuple[int, int]] = None, return_viewer: bool = False, viewer: Optional[napari.viewer.Viewer] = None, checkpoint_path: Optional[str] = None, device: Union[str, torch.device, NoneType] = None) -> Optional[napari.viewer.Viewer]:
183def annotator_tracking( 184 image: np.ndarray, 185 embedding_path: Optional[str] = None, 186 # tracking_result: Optional[str] = None, 187 model_type: str = util._DEFAULT_MODEL, 188 tile_shape: Optional[Tuple[int, int]] = None, 189 halo: Optional[Tuple[int, int]] = None, 190 return_viewer: bool = False, 191 viewer: Optional["napari.viewer.Viewer"] = None, 192 checkpoint_path: Optional[str] = None, 193 device: Optional[Union[str, torch.device]] = None, 194) -> Optional["napari.viewer.Viewer"]: 195 """Start the tracking annotation tool fora given timeseries. 196 197 Args: 198 raw: The image data. 199 embedding_path: Filepath for saving the precomputed embeddings. 200 model_type: The Segment Anything model to use. For details on the available models check out 201 https://computational-cell-analytics.github.io/micro-sam/micro_sam.html#finetuned-models. 202 tile_shape: Shape of tiles for tiled embedding prediction. 203 If `None` then the whole image is passed to Segment Anything. 204 halo: Shape of the overlap between tiles, which is needed to segment objects on tile boarders. 205 return_viewer: Whether to return the napari viewer to further modify it before starting the tool. 206 viewer: The viewer to which the SegmentAnything functionality should be added. 207 This enables using a pre-initialized viewer. 208 checkpoint_path: Path to a custom checkpoint from which to load the SAM model. 209 device: The computational device to use for the SAM model. 210 211 Returns: 212 The napari viewer, only returned if `return_viewer=True`. 213 """ 214 215 # TODO update this to match the new annotator design 216 # Initialize the predictor state. 217 state = AnnotatorState() 218 state.initialize_predictor( 219 image, model_type=model_type, save_path=embedding_path, 220 halo=halo, tile_shape=tile_shape, prefer_decoder=False, 221 ndim=3, checkpoint_path=checkpoint_path, device=device, 222 ) 223 state.image_shape = image.shape[:-1] if image.ndim == 4 else image.shape 224 225 if viewer is None: 226 viewer = napari.Viewer() 227 228 viewer.add_image(image, name="image") 229 annotator = AnnotatorTracking(viewer) 230 231 # Trigger layer update of the annotator so that layers have the correct shape. 232 annotator._update_image() 233 234 # Add the annotator widget to the viewer and sync widgets. 235 viewer.window.add_dock_widget(annotator) 236 vutil._sync_embedding_widget( 237 state.widgets["embeddings"], model_type, 238 save_path=embedding_path, checkpoint_path=checkpoint_path, 239 device=device, tile_shape=tile_shape, halo=halo 240 ) 241 242 if return_viewer: 243 return viewer 244 245 napari.run()
Start the tracking annotation tool fora given timeseries.
Arguments:
- raw: The image data.
- embedding_path: Filepath for saving the precomputed embeddings.
- model_type: The Segment Anything model to use. For details on the available models check out https://computational-cell-analytics.github.io/micro-sam/micro_sam.html#finetuned-models.
- tile_shape: Shape of tiles for tiled embedding prediction.
If
None
then the whole image is passed to Segment Anything. - halo: Shape of the overlap between tiles, which is needed to segment objects on tile boarders.
- return_viewer: Whether to return the napari viewer to further modify it before starting the tool.
- viewer: The viewer to which the SegmentAnything functionality should be added. This enables using a pre-initialized viewer.
- checkpoint_path: Path to a custom checkpoint from which to load the SAM model.
- device: The computational device to use for the SAM model.
Returns:
The napari viewer, only returned if
return_viewer=True
.